posterization.f08 Source File


Source Code

module posterization
  implicit none

contains
  pure function make_histogram(layer, maximum) result(hist)
    !! Make histogram
    implicit none
    integer, intent(in) :: layer(:, :)
      !! The layer of image.
    integer, intent(in) :: maximum
      !! Max value of pixels.
    integer :: hist(0:maximum), i
      !! Histgram array.
    hist = 0
    do concurrent(i=0:maximum)
      block
        hist(i) = count(layer == i)
      end block
    end do
  end function make_histogram

  pure function to_binary(img, threshold) result(rst)
    !! Apply binarization
    implicit none

    integer, intent(in) :: img(:, :, :)
      !! Image array that has pixel values.
    integer, intent(in) :: threshold
      !! Threshold
    integer, allocatable :: rst(:, :, :)
      !! Image array that applied binarization.

    rst = img
    where (img(1, :, :) >= threshold)
      rst(1, :, :) = 1
    else where
      rst(1, :, :) = 0
    end where
  end function to_binary

  pure function otsu(img, maximum) result(rst)
    !! Applie binarization with ostu's method.
    implicit none

    integer, intent(in) :: img(:, :, :)
      !! Image array that has pixel values.
    integer, intent(in) :: maximum
      !! Max pixel value.
    integer, allocatable :: rst(:, :, :), hist(:)
      !! Image Array that applied binarization.
    integer :: i, th, best_th, rescale_rate
    real :: ave_class1, ave_class2, nums(0:maximum), var, best_var, &
            n_pix_class1, n_pix_class2

    hist = make_histogram(img(1, :, :), maximum)
    rescale_rate = size(img)**0.5
    ! numsとthresold_to_varを配列の宣言時に代入するのはエラーになる
    nums = [(real(i), i=0, maximum)]
    best_th = 0
    best_var = -1.0

    do concurrent(th=0:maximum)
      block
        n_pix_class1 = sum(hist(:th))/rescale_rate
        n_pix_class2 = sum(hist(th + 1:))/rescale_rate

        if (n_pix_class1 == 0) then
          ave_class1 = 0
        else
          ave_class1 = sum(hist(:th)*nums(:th))/n_pix_class1/rescale_rate
        end if

        if (n_pix_class2 == 0) then
          ave_class2 = 0
        else
          ave_class2 = sum(hist(th + 1:)*nums(th + 1:))/n_pix_class2/rescale_rate
        end if

        var = n_pix_class1*n_pix_class2*((ave_class1 - ave_class2)**2)

        if (var > best_var) then
          best_th = th
          best_var = var
        end if
      end block
    end do

    rst = to_binary(img, best_th)
  end function otsu

  pure function adaptive_threshold(img, maximum, kernel_size) result(rst)
    !! Applie adaptive threshold
    implicit none

    integer, intent(in) :: img(:, :, :)
      !! Image array that has pixel values.
    integer, intent(in) :: maximum
      !! Max pixel value.
    integer, intent(in), optional :: kernel_size
      !! Size of kernel.
    integer, allocatable :: rst(:, :, :), thresholds(:, :), row(:), column(:)
      !! Image array that applied adaptive threshold.
    integer :: height, width, h, w, img_shape(3), s, dh, dw, i, k_size

    if (present(kernel_size)) then
      k_size = kernel_size
    else
      k_size = 15
    end if

    img_shape = shape(img)
    height = img_shape(2)
    width = img_shape(3)
    allocate (thresholds(height, width))
    allocate (rst(1, height, width))

    do concurrent(w=1:width, h=1:height)
      block
        row = [(i, i=max(1, w - k_size/2), min(w + k_size/2, width))]
        column = [(i, i=max(1, h - k_size/2), min(h + k_size/2, height))]
        s = 0
        do dw = 1, size(row)
          do dh = 1, size(column)
            s = s + img(1, column(dh), row(dw))
          end do
        end do
        thresholds(h, w) = nint(s/real(size(row)*size(column)))
        deallocate (row)
        deallocate (column)
      end block
    end do

    where (img(1, :, :) <= thresholds(:, :))
      rst(1, :, :) = 0
    else where
      rst(1, :, :) = 1
    end where
  end function adaptive_threshold

  pure function quantize(img, n_split, maximum) result(rst)
    !! Apply quantize
    implicit none

    integer, intent(in) :: img(:, :, :)
      !! Image array that has pixel values.
    integer, intent(in) :: n_split
      !! Number of split.
    integer, intent(in), optional :: maximum
      !! Max value of pixels.
    integer, allocatable :: rst(:, :, :)
      !! Image array that applied quantize.
    integer :: m

    if (present(maximum)) then
      m = maximum
    else
      m = 255
    end if

    rst = img/(m/n_split + 1)
  end function quantize

  pure function dither(img, maximum) result(rst)
    !! Apply dither translation
    implicit none

    integer, intent(in) :: img(:, :, :)
      !! Image array that has pixel values.
    integer, intent(in) :: maximum
      !! Max value of pixels.
    integer, allocatable :: rst(:, :, :)
      !! Image array that applied dither.

    integer :: dither_mtx(4, 4)
    integer :: height, width, h, w, h_range(2), w_range(2), dh, dw, img_shape(3)
    integer, allocatable :: targets(:, :)

    dither_mtx = reshape([0, 12, 3, 15, &
                          8, 4, 11, 7, &
                          2, 14, 1, 13, &
                          10, 6, 9, 5]*((maximum + 1)/16), shape(dither_mtx))
    img_shape = shape(img)
    height = img_shape(2)
    width = img_shape(3)
    allocate (rst(1, height, width))

    do w = 0, ceiling(width/4.0)
      do h = 0, ceiling(height/4.0)
        h_range = [h*4 + 1, min(height, (h + 1)*4)]
        w_range = [w*4 + 1, min(width, (w + 1)*4)]

        targets = img(1, h_range(1):h_range(2), w_range(1):w_range(2))
        do concurrent(dh=1:h_range(2) - h_range(1) + 1, dw=1:w_range(2) - w_range(1) + 1)
          block
            if (dither_mtx(dh, dw) > targets(dh, dw)) then
              targets(dh, dw) = 0
            else
              targets(dh, dw) = 1
            end if
          end block
        end do
        rst(1, h_range(1):h_range(2), w_range(1):w_range(2)) = targets
      end do
    end do

  end function dither

  pure function error_diffusion(img, maximum) result(rst)
    !! Apply error diffusion
    implicit none

    integer, intent(in) :: img(:, :, :)
      !! Image array that has pixel values.
    integer, intent(in) :: maximum
      !! Max value of pixels.
    integer, allocatable :: rst(:, :, :)
      !! Image array that applied error diffusion.
    integer :: height, width, h, w, img_shape(3), quant_error, replace_coords(4, 2), dh, dw, old, new, i
    real :: dither_rates(4)

    dither_rates = [7, 3, 5, 1]/16.0

    img_shape = shape(img)
    rst = img(1:1, :, :)

    do w = 1, img_shape(3)
      do h = 1, img_shape(2)
        old = rst(1, h, w)
        if (rst(1, h, w) >= (nint(maximum/2.0))) then
          rst(1, h, w) = 1
        else
          rst(1, h, w) = 0
        end if
        new = rst(1, h, w)*maximum
        quant_error = old - new
        ! TODO
        ! 列優先でループが回るので拡散を縦方向にしているのを修正する
        replace_coords = reshape([[h + 1, h - 1, h, h + 1], [w, w + 1, w + 1, w + 1]], shape(replace_coords))
        do concurrent(i=1:4)
          block
            dh = replace_coords(i, 1)
            dw = replace_coords(i, 2)
            if (dh > 0 .and. dh <= img_shape(2) .and. dw > 0 .and. dw <= img_shape(3)) then
              rst(1, dh, dw) = rst(1, dh, dw) + nint(dither_rates(i)*quant_error)
            end if
          end block
        end do
      end do
    end do
  end function error_diffusion

  pure function rgb_to_gray(img) result(rst)
    !! Translate rbg image to grayscale image
    implicit none

    integer, intent(in) :: img(:, :, :)
      !! Image array that has pixel values.
    integer, allocatable :: rst(:, :, :)
      !! Translate image array.
    integer :: h, w, img_shape(3)
    img_shape = shape(img)
    allocate (rst(1, img_shape(2), img_shape(3)))

    do concurrent(h=1:img_shape(2), w=1:img_shape(3))
      rst(1, h, w) = 2989*img(1, h, w) + 5870*img(2, h, w) + 1140*img(3, h, w)
    end do
    rst = nint(rst/10000.0)
  end function rgb_to_gray
end module posterization